IV B.Tech - I Semester - Regular Examinations - DECEMBER 2022

OPERATIONS RESEARCH (MECHANICAL ENGINEERING)

Duration: 3 hours

Max. Marks: 70
Note: 1. This question paper contains two Parts A and B.
2. Part-A contains 5 short answer questions. Each Question carries 2 Marks.
3. Part-B contains 5 essay questions with an internal choice from each unit. Each question carries 12 marks.
4. All parts of Question paper must be answered in one place.

BL - Blooms Level
CO - Course Outcome
PART - A

		BL	CO
1. a)	Write the general structure of linear programming problem.	L2	CO1
1. b)	What do you mean by constrained assignment problem?	L2	CO2
1. c)	What is the general structure of queuing model?	L2	CO3
1. d)	Write some applications of group replacement.	L2	CO4
1. e)	Write the assumptions of basic inventory model.	L2	CO5

PART - B

| | | UNIT-I | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | BL CO | Max. |
| :---: |
| Marks |$|$

OR

UNIT-II

4 a) Explain the general Mathematical model of transportation problem.
b) The following table shows all the necessary information on the availability of supply to each warehouse, the requirement of each market and the unit transportation cost from each warehouse to each market.

Ware house					Available						
	I	II	III	IV	supply	$	$	A	5	2	4
:---	:---	:---	:---								
3	22										
B	4	8	1								
6	15										
C	4	6	7								
5	8										
Requirement	7	12	17								

Find the optimal schedule and calculate minimum total cost of shipping

OR

5 a) Briefly explain about the assignment problems in OR and applications of assignment problems in OR.
b) Solve the following assignment problem to minimize the total time of the operator

OR										
5	a)	Briefly explain about the assignment problems in OR and applications of assignment problems in OR.						L2	CO 2	4 M
	b)	Solve the following assignment problem to minimize the total time of the operator						L3	CO 2	8 M
		Operator	1	2	3	4	5			
		1	6	2	5	2	6			
		2	2	5	8	7	7			
		3	7	8	6	9	8			
		4	6	2	3	4	5			
		5	9	3	8	9	7			
		6	4	7	4	6	8			

OR										
5	a)	Briefly explain about the assignment problems in OR and applications of assignment problems in OR.						L2	CO 2	4 M
	b)	Solve the following assignment problem to minimize the total time of the operator						L3	CO 2	8 M
		Operator	1	2	3	4	5			
		1	6	2	5	2	6			
		2	2	5	8	7	7			
		3	7	8	6	9	8			
		4	6	2	3	4	5			
		5	9	3	8	9	7			
		6	4	7	4	6	8			

L 2	CO 2	4 M

L 2	CO 2	4 M

L 3	CO 2	8 M

UNIT-III

6	a)	Explain the terms single server \& multiple server and finite que length \& infinite que length.	L2	CO3	4 M
b)	At a railway station only one train is handled at a time. The railway track is sufficient only for two trains to wait while others are given signal to leave the station. Trains arrive at the station at an average rate of 6 per hours and the railway station can handle them on an average of 12 per hours. Assuming	L3	CO3	8 M	
Poisson arrivals and exponential service distribution, find the steady state probability of the various number of trains in the system. Also calculate the average number of trains in the system.					

OR											
7		Find the sequence that minimizes total machining time to complete the following data and calculate the idle times of the machines.							L3	CO 3	12 M
		Machines	A	B	C	D	E	F			
		$\begin{aligned} & \text { Time on } \\ & \text { machine-I } \end{aligned}$	4	9	8	5	10	9			
		Time on machine-II	5	4	3	6	2	5			
		Time on machine-III	7	8	6	12	6	7			
						IT-I					
8	a)	Explain two p game.			co su	gan	e and	person	L2	CO 4	4 M
	b)	Solve the follow	,	gam							
		Y_{1}			Y_{2}		Y_{3}		L4	CO4	8 M
		X_{1} 4 X_{2} 18			20				L4	CO4	8 M
		X_{2} 18			12		0				
						OR					
9		The data collect which is Rs. 60	te		$\begin{aligned} & \text { annin } \\ & \text { given } \end{aligned}$	$\begin{aligned} & \text { a M } \\ & \text { pelow } \end{aligned}$	achine	e cost of	L4	CO 4	12 M

